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1. Introduction 

In order to make the photo-acoustic spectrometer used for the detection of energetics more 
efficient, it is important to understand the acoustic resonance conditions in the photo-acoustic 
cell. At first glance this may seem simple, but as it turns out the interaction of the main tube with 
side branches is quite complicated. Assuming that a hole is made exactly in the middle of the 
main tube, the length and diameter of the side branch will determine the resonant frequency. This 
can be anywhere between the resonance of the main tube and twice that frequency. Starting as 
early as 1922 and continuing through the present day, researchers, such as Mason (1) at Bell 
Labs have studied the acoustics of tubes and tried to develop techniques that would predict the 
resonant or filtering characteristics of tubes with side branches.  

As long ago as the Golden Age of Greece, man has been able to place holes in the correct 
position along a hollow tube to make music. Today instrument designers have developed a 
mathematical technique to determine the location and shape of the holes along the tube.  

A more modern approach, which is an extension of Mason’s use of electrical network theory 
applied to acoustics, is the use of electrical transmission line theory to describe the tube and the 
side branch as matrices. The resultant matrix is then applied to the pressure and mass flow at any 
point along the tube in order to calculate the pressure and mass flow at any other point. Here, 
pressure and mass flow are synonymous with voltage and current. 

In this report, I will discuss both musical instrument design and matrix theory that is applied to 
acoustic tubes with side branches. I will also discuss a series of experiments performed on tubes 
with side branch holes of various sizes and shapes. I will then apply the theory to our photo-
acoustic spectrometer to show that the theory predicts the resonant frequency within a few 
percent. In closing, I will discuss several sources of error in these methods. 

2. Acoustic Waves in Cylindrical Tubes 

2.1 Plane Waves 

Acoustic waves that are confined to a tube with rigid walls can be considered to be plane waves, 
assuming the diameter of the tube is small compared to the wave length of the acoustic wave. 
Higher order modes are only possible when the diameter of the tube is greater than two-thirds of 
the wave length (2). Also, the plane wave approximation only holds for frequencies where the 
effects of viscose friction are negligible. At higher frequencies, the effect of viscosity is confined 

to a thin layer that is close to the wall (ߜ௔ ൌ ቀଶఔ
ఠ
ቁ
ଵ/ଶ

), where ν=η/ρ is the kinetic viscosity. In 
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order to make the plane wave approximation valid, one should have a boundary layer that is thin: 
ఋೌ
ௗ
≪ 1 (where d is the diameter of the tube). This leads to the following relationship (2): 

ଶఔ

గௗమ
≪ ݂ ൏ ௖

ଶௗ
. The kinetic viscosity of air is 1.5 × 10–5m2/s, so for a representative tube with 1 

mm diameter, the plane wave approximation is valid for frequencies 9.5 Hz<f<170 kHz.  

When acoustic waves propagate (alternating compression and expansion of the medium), the 
temperature gradients between these compressed and expanded volumes are very small. Because 
of this, very little heat flows from one region to another, and the process can be considered 
adiabatic. In an adiabatic process, the pressure in the tube can be represented as a function of 
density, P=P(ρ). Now from the ideal gas law PV=nRT, and for an adiabatic process, this leads to 
P=Cργ, where C is a constant and γ is the ratio of the specific heats. If we now represent the 
function P(ρ) as a Taylor series expansion around the point ρ0 and discard higher order terms we 
have  

 P–P0 = ቀడ௉
డఘ
ቁ ሺߩ െ  ଴ሻ. (1)ߩ

In the limit, this can be expressed as 

 ݀ܲ ൌ 	ቀௗ௉
ௗఘ
ቁ
଴
 (2)  ,ߩ݀

where ቀௗ௉
ௗఘ
ቁ
଴
is the slope of the adiabatic plot of pressure vs. density at the point (P0,ρ0).  

Acoustic waves are longitudinal waves. This means that particles move back and forth in the 
direction of propagation, creating alternating volumes of compression and expansion. The 
restoring force that propagates the wave along is simply the elastic opposition that arises when 
the fluid is compressed.   

Figure 1 below will be used to derive an acoustic plane wave equation. The variables to be used 
in this derivation are listed and defined below the figure. This derivation follows the discussion 
given by Kinsler and Frey (3). 

 

Figure 1.  Diagram of a slice down the axis of the tube. 
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The variables to be used in this derivation are listed and defined below: 

x= equilibrium coordinate of a thin sheet of molecules 

ξ = displacement of the sheet along the axis of propagation 

u = velocity of the sheet u = 
డక

డ௧
  

ρ = instantaneous density at any point 

ρ0 = constant equilibrium density of the medium 

s = condensation at any point defined below 

 s = 
ఘି	ఘబ
ఘబ

 or ρ = ρ0(1+s). (3) 

P = instantaneous pressure at any point 

P0 = constant equilibrium pressure 

p = excess pressure or acoustic pressure at any point defined as  p = P-P0 

c = velocity of wave propagation 

First, we must address the conservation of mass. The mass contained between x and x+dx can be 
written as ρ0Sdx, where Sdx is the volume element. After an acoustic wave passes, the particles at 
x will have moved to x+ξ, and the particles at x+dx will have moved to x+dx+(ξ+dξ), so that the 

new volume is Sdx(1+
డక

డ௫
). The mass within this volume must be the same as the original mass 

due to the conservation of mass, which leads to the following: 

 ρSdx(1+
డక

డ௫
) =  ρ0Sdx. (4) 

Now, if we replace ρ with ρ0(1+s) from equation 3, equation 4 becomes 

 (1+s)(1+
డక

డ௫
 ) = 1. (5) 

Because both the density and molecular displacements are very small (for even load noises 

neither will exceed 10–4), we can neglect the product of s
డక

డ௫
, and equation 5 becomes 

 s =  െడక

డ௫
.   (6) 

For acoustic waves, the incremental pressure changes are very small, so that dP can be replaced 
by p the acoustic pressure, and the small change in density dρ can be replaced by sρ0 (see 
equation 3). Now, using these in equation 2 leads to 

 p = ቀௗ௉
ௗఘ
ቁ
଴
ρ0s. (7) 
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We can also let   

 c2 = ቀௗ௉
ௗఘ
ቁ
଴
 , (8) 

so that we have 

 p = ρ0c
2s. (9) 

Finally, by replacing s with െ డక

డ௫
 from equation 6, we have 

 p = െߩ଴ܿଶ
డక

డ௫
. (10) 

When a fluid is deformed, as we have described, the pressure acting on the two faces of the 
volume element Sdx is slightly different, producing a net force in the positive x direction. 
Because the external force acting on each face is equal to the pressure times the area, the net 
force can be written as 

 dFx = ቂ݌ െ	ቀ݌ ൅ డక

డ௫
ቁቃݔ݀ ܵ ൌ െ డఘ

డ௫
 (11) .ܵݔ݀

Now, if we set this net force equal to the mass of the volume element times its acceleration, we 
are left with 

 െడ௣

డ௫
ൌ ଴ߩ

డమక

డ௧మ
. (12) 

Differentiating equation 10 with respect to x and replacing 
డ௣

డ௫
 in equation 12, we are left with 

  
డమక

డ௧మ
ൌ ܿଶ డ

మక

డ௫మ
.  (13) 

This is the wave equation in displacement, and similar equations apply to pressure, velocity, and 
condensation. 

A note here should be added in regard to the wave velocity in a tube. In air, the velocity is a 
function of temperature alone and is given by  

 ܿ ൌ 331.3 ൅ .606ܶሺ ௠	ሻܥ
௦	

଴  . (14) 

At 20	 C	° , this leads to a velocity, ܿ ൌ 343.6௠

௦
. This velocity is no longer valid inside a tube with 

rigid walls due to the thermal exchange with the walls and viscous friction at the walls. The first 
to study the velocity and attenuation of sound waves in tubes was Helmholtz (4) in 1863. Later, 
Kirchhoff (5) and Rayleigh (6) extended this theory. Zwikker and Kosten (7) offered the most 
widely accepted equation for the propagation constant derived from Kirchhoff’s work: 
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, (15)
  

 Where ܬ௡ are the Bessel functions of order n; ܵ ൌ ටݎ
ఠ

ఔ
 is the shear wave number; r is the inner 

radius of the tube; ω is the radian frequency; the parameter √ܵߪ is the ratio of the radius r to the 

thermal boundary layer defined earlier as ( ߜ௔ ൌ ቀଶఔ
ఠ
ቁ
ଵ/ଶ

), where ν=η/ρ the kinetic viscosity; and 

ߛ ൌ
஼೛
஼ೇ

 is the ratio of the specific heats. Now, the important thing to take away here is that the 

phase velocity is given by 

௣ݒ  ൌ
௖

ூ௠ሺ௰ሻ
 . (16) 

Tijdeman (8) did a numerical analysis of this equation and published the result in tables based on 
S and k; the reduced frequency given by ݇ ൌ ఠ௥

௖
. For our representative cell, with 1 mm diameter 

and 10 mm length, S=44 and k=0.1691. From the tables, the Im(Γ) = 1.0261 and the velocity in 
the tube is 335 m/s.  

2.2 Higher Order Modes (9, 10, 11) 

Figure 2 depicts a section of a cylindrical tube with radius r=a. It is assumed that the tube walls 
are perfectly rigid and smooth. Wave propagation is along the positive z axis into the report. We 
find that the acoustic pressure in the tube is governed by the wave equation: 

,ݎሺ݌ଶ׏  ߮, ,ݖ ሻݐ െ ଵ

௖మ
డమ

డ௧మ
,ݎሺ݌ ߮, ,ݖ ሻݐ ൌ 0. (17) 

 

Figure 2.  Geometry of a tube in cylindrical coordinates. 

 
We can use the technique of the separation of variables to solve this differential equation by 
allowing 

,ݎሺ݌  ߮, ,ݖ ሻݐ ൌ ܴሺݎሻߔሺ߮ሻܼሺݖሻܶሺݐሻ. (18) 
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The Laplace operator in cylindrical coordinates is defined as 

≡ଶ׏  ቀ డ
మ

డ௥మ
൅ ଵ

௥

డ

డ௥
൅ ଵ

௥మ
డమ

డఝమ
൅ డ

డ௭మ
ቁ. (19) 

If we now insert equation 18 into equation 17 and apply the Laplace operator, we are left with 
the following after dividing through by ݌ሺݎ, ߮, ,ݖ  :ሻݐ

 
ோ"ሺ௥ሻ

ோሺ௥ሻ
൅ ଵ

௥

ோᇲሺ௥ሻ

ோሺ௥ሻ
൅ ଵ

௥మ
ః"ሺఝሻ

ఃሺఝሻ
൅ ௓"ሺ௭ሻ

௓ሺ௭ሻ
െ ଵ

௖మ
்"ሺ௧ሻ

்ሺ௧ሻ
ൌ 0. (20) 

In order to proceed with the solution of equation 20, move the term exclusive in t to the right-
hand side of equation 20. Noticing that the right-hand side is a function of t alone, it must, 
therefore, be equal to a constant. Allowing that constant to be equal to െ݇ଶ, where ݇ ൌ ఠ

௖
; we are 

led to the following equation: 

 ܶ"ሺݐሻ ൅ ߱ଶܶሺݐሻ ൌ 0. (21) 

This equation is that of a harmonic oscillator, and its solution is of the form 

 ܶሺݐሻ ൌ ଴ܶ݁േ௝ఠ௧. (22) 

Now, we address the term in z. We can move the term in z to the right side of equation 20 so that 
now the right side of equation 20 is a term in z alone. The right side again must be equal to a 
constant as follows: 

 െ݇ଶ െ ௓"ሺ௭ሻ

௓ሺ௭ሻ
ൌ െߪ௖ଶ. (23) 

This can be rearranged as 

 ܼ"ሺݖሻ ൅ ሺ݇ଶ െ ሻݖ௖ଶሻܼሺߪ ൌ 0. (24) 

The solution of this equation will be of the form 

 ܼሺݖሻ ൌ ܼ଴݁േ௝ఉ௭. (25) 

Here, ߚଶ ൌ ݇ଶ െ ௖ଶ.  It should be noted that when ݇ଶߪ ൐  ௖ଶ, the solution is oscillatory; whenߪ
݇ଶ ൏ ௖ଶ, the solution is exponentially growing or decaying; and when ݇ଶߪ ൌ  ௖ଶ, the solution isߪ
constant. By convention, we will choose ݇ଶ ൐  ௖ଶ, and if we choose propagation in the positive zߪ
direction, we can drop the + sign from the exponent.   

Equation 20 can now be written in the form 

 
௥మ

ோ

ௗమோ

ௗ௥మ
൅ ௥

ோ

ௗோ

ௗ௥
൅ ௖ଶߪଶݎ ൌ

ିଵ

ః

ௗమః

ௗఝమ
, (26) 

and because we have two completely independent equations in different variables equal to each 
other, they must both be equal to the same constant so that 
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ିଵ

ః

ௗమః

ௗఃమ ൌ  ,ఝଶߪ

or  
ௗమః

ௗఝమ
൅ ߔఝଶߪ ൌ 0, (27) 

and ݎଶ ௗ
మோ

ௗ௥మ
൅ ݎ ௗோ

ௗ௥
൅ ൫ݎଶߪ௖ଶ െ ఝଶ൯ܴߪ ൌ 0. (28) 

The solution to equation 27 is 

 Φ(φ) = ܽ଴sin(σφφ) + ܾ଴cos(σφφ), (29) 

and Φ(φ) must be periodic in φ or Φ(φ) = Φ(φേm2π), so that σφ must be an integer  n=1,2,3…: 

 Φ(φ) = ܽ଴sin(nφ) + ܾ଴cos(nφ). (30) 

Now, equation 28 is Bessel’s differential equation. Solutions to this equation take the form of 

 R(r) = CJn(σcr) + DYn(σcr), (31) 

where Jn and Yn are the Bessel functions of the first and second kind in order n, respectively. 
There are two boundary conditions that must be met. First, the function p(r,φ,z,t) must be 
bounded everywhere within the tube. Because the Bessel function of the second kind approaches 
െ∞	ܽݏ	ݎ → 0, we must set D = 0. The second boundary condition is as follows. Because the 
wall of the tube is perfectly rigid, there can be no net flow in the direction of r at the wall r = a: 

 
డ௣

డ௥
ൌ 0      at      r = a. (32) 

We can now state the complete solution of the wave equation for p(r,φ,z,t): 

 p(r,φ,x,t) = (Asin(nφ) + Bcos(nφ))Jn(σcr)exp[j(–βz+ωt)], (33) 

where the constants C, Z0 , and T0 have been incorporated into A and B. The boundary condition 
at r = a leads to J’n(σca)=0. After looking up the roots of the first derivative ܬ௡	ᇱ ሺߪ௖ܽ	ሻ ൌ 0, we 
find that σca = 1.84118 for the first propagating none 0,0 mode of the lowest order. Because σc = 
2π/λc and λc = c/fc, where c is the velocity of sound, and fc is the cutoff frequency: 

 1.84118 = 2πa/λc = 2πafc/c, 

or fc = 1.84118c/2πa. (34) 

If we apply this to a representative tube with 1 mm diameter, and we assume an approximate 
velocity of 340 m/s fc ≅200 kHz, this indicates that any wave of frequency less than 200 kHz 
will propagate as a plane wave. 
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3. Transmission Line Theory Applied to Acoustics 

It turns out that a duct with an acoustic wave propagating within can be modeled as if it was an 
electrical transmission line. In all that will follow, this analogy will be useful. The analogous 
terms are pressure with voltage and mass flow with current. Acoustic impedance will be defined 

as pressure/mass flow (ܼ ൌ ௣

௎
	ൌ ఘబ஼

ௌ
), and admittance is defined as 

ଵ

௭
. The density of the gas is ρ0, 

c is the speed of sound in the medium, and S is the cross-sectional area of the tube. Expanding on 
the transmission line analogy, distributed inertance (M) and distributed compliance (C) are 
associated with inductance and capacitance, respectively. As in a transmission line, the 
characteristic impedance is given by (12) 

 ܼ଴	ୀට
௅

஼
ൌ ටெ

஼
ൌ ට

ఘబ/ௌ

ௌ/ఘబ௖మ
ൌ

ఘబ௖

ௌ
 , (35) 

where ܯ ൌ
ఘబ
ௌ

 and ܥ ൌ
ௌ

ఘబ௖మ
 . 

Now let’s begin the analysis of a transmission line using figure 3 as our model. 

 

Figure 3.  A transmission line with source and load. 

A transmission line is different than an ordinary electrical circuit, because its components are 
distributed along the line and not lumped into resistors and capacitors. It turns out that if the load 
impedance is not the same as the characteristic impedance, there will be a reflected wave 
traveling back toward the source due to the conservation of energy at the load. In this case, that 
direction is left. It also turns out that the impedance changes along the line. This is due to the 
load impedance having a differing effect at different positions along the line. This is analogous to 
the way the load on the secondary of a transformer is seen by the primary due to mutual 
inductance or coupling between the two sides:  

  ܼሺݖሻ ൌ
௏ሺ௭ሻ

ூሺ௭ሻ
. (36) 

To develop an equation for the impedance along the line and the input impedance seen by the 
source, we have to look at the superposition of the forward and reverse voltage and current: 
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 ܸሺݖሻ ൌ ାܸ݁ି௝௞௭ ൅ ܸି ݁௝௞௭ , (37) 

ሻݖሺܫ  ൌ ଴ܻ൫ ାܸ݁ି௝௞௭ െ ܸି ݁௝௞௭൯. (38) 

Here, Y0 is the admittance into the transmission line (Y0=1/Z), V+ is the wave traveling right, and 
V- is that traveling left. Figure 4 shows a segment of the transmission line. If we apply 
Kirchhoff's voltage law around this loop, we have 

 ܸ െ ݖሻ݀ݖሺܫܮ݆߱ െ ሺܸ ൅ ܸ݀ሻ ൌ 0, (39) 

from which we have  
ௗ௏

ௗ௭
ൌ െ݆߱ܫܮሺݖሻ. (40) 

Using the fact that ݇ ൌ  (41) ,ܥܮ√߱

 
and applying equation 40 to equation 37, we are left with equation 38. 

 

Figure 4.  An infinitely small segment of the transmission line. 

Now, to develop an expression for the impedance as a function of position on the line, we need a 
couple of items. First, ZL=V(z=l)/I(z=l). Then we need to define a reflection coefficient ΓL=V-

/V+. If we apply these to equation 37 divided by equation 38 and let the load be at z=0 we have  

 
௏శା௏ష
ூశିூష

ൌ
௏శା௰ಽ௏శ
௏శି௰ಽ௏శ

ܼ଴ ൌ
ଵା௰ಽ
ଵି௰ಽ

ܼ଴ ൌ ܼ௅. (42) 

Solving this for ΓL we have 

௅߁  ൌ
௓ಽି௓బ
௓బା௓ಽ

, (43) 

 ܼሺݖሻ ൌ
௏ሺ௭ሻ

ூሺ௭ሻ
ൌ

௏శ௘షೕೖ೥ା௰ಽ௏శ௘ೕೖ೥
భ
ೋబ
ሺ௏శ௘షೕೖ೥ି௰ಽ௏శ௘ೕೖ೥ሻ

, 

 ܼሺݖሻ ൌ ܼ଴
ሺ௓బା௓ಽሻ௘షೕೖ೥ାሺ௓ಽି௓బሻ௘ೕೖ೥

ሺ௓బା௓ಽሻ௘షೕೖ೥ିሺ௓ಽି௓బሻ௘ೕೖ೥
, 



 

 
10

 Zሺzሻ ൌ Z଴
୞ై ୡ୭ୱሺ୩୸ሻି୨୞బ ୱ୧୬ሺ୩୸ሻ

୞బ ୡ୭ୱሺ୩୸ሻି୨୞ై ୱ୧୬ሺ୩୸ሻ
. 

Letting the position of the source be z=-l, we are left with the important result 

 ܼ௜௡ ൌ ܼ଴
௓ಽା௝௓బ ୲ୟ୬ሺ௞௟ሻ

௓బା௝௓ಽ ୲ୟ୬ሺ௞௟ሻ
. (44) 

This equation will be used repeatedly, as we develop the equations for resonance in our tube.  

Now we apply a very powerful matrix representation to our transmission line problem. We want 
to develop a technique that will allow us to transform a voltage and current at any point along the 
line to a voltage and current at a different point on the line:  

 ฬ ଶܸ
ଶܫ
ฬ ൌ ቚܣ ܤ

ܥ ܦ
ቚ ฬ ଵܸ
ଵܫ
ฬ. (45) 

Let’s be reminded of equations 37 and 38, and we will let position 1 be at z=0 (the load) and 
position 2 be at z=-l (the source) as we have discussed before: 

 ܸሺݖሻ ൌ ାܸሺ݁ି௝௞௭ ൅  ௅݁௝௞௭ሻ, (46)߁

ሻݖሺܫ  ൌ ଴ܻ ାܸሺ݁ି௝௞௭ െ  ௅݁௝௞௭ሻ. (47)߁

Now let’s let the load be an open so that ΓL = +1 and V(z=0)=+2V+ applying these to equations 
45, 46, and 47 we have 

 ܸሺݖ ൌ െ݈ሻ ൌ ାܸሺ݁௝௞௟ ൅ ݁ି௝௞௟ሻ ൌ ܣ2 ାܸ, (48) 

ݖሺܫ  ൌ െ݈ሻ ൌ
௏శ
௓బ
ሺ݁௝௞௟ െ ݁ି௝௞௟ሻ ൌ ܥ2 ାܸ. (49) 

These lead to  

ܣ  ൌ cos ݈݇, (50) 

 Cൌ
௝

௓బ
sin ݈݇. (51) 

Conversely, if we let the load be a short so that ΓL= -1 and I(z=0)=
ଶ

௓బ
ାܸ and V(z=0) = 0 again, 

using equations 45, 46, and 47 we have 

 ܸሺݖ ൌ െ݈ሻ ൌ ାܸሺ݁௝௞௟ െ ݁ି௝௞௟ሻ ൌ
ଶ

௓బ
ାܸ(52)  ,ܤ 

 Iሺݖ ൌ െ݈ሻ ൌ
௏శ
௓బ
ሺ݁௝௞௟ ൅ ݁ି௝௞௟ሻ ൌ

ଶ

௓బ
ାܸܦ, 

leading to 

ܤ  ൌ ݆ܼ଴ sin ݈݇, (53) 
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ܦ  ൌ cos ݈݇. (54) 

So, we now have the transfer matrix from point 1 to point 2, where l represents the length of that 
section of the line, and Z0 is the characteristic impedance in that section.  

We can extend this technique to handle a line with any number of sections in the following 
manner. We define the transfer matrix as follows: 

 ௜ܶ ൌ อ
cos ݇௜݈௜ ݆ܼ଴௜ sin ݇௜݈௜
௝

௓బ೔
sin ݇௜݈௜ cos ݇௜݈௜

อ, (55) 

and we use this to describe a line with N sections as follows: 

 ฬ ௌܸ
ௌܫ
ฬ ൌ ேܶ ∙ ேܶିଵ ⋯ ଵܶ ฬ

௅ܸ
௅ܫ
ฬ. (56) 

This will become useful later when we describe acoustic tubes with side branches and tubes that 
change diameter. 

4. Musical Instrument Design 

A flute is essentially a hollow tube with a way at one end to modulate the pressure of the air 
column within the tube. Along the length of the tube are holes that essentially change the length 
of the tube, and, thereby, change the frequency of resonance in the tube. We will start with a tube 
with no holes as shown in figure 5. At resonance in the fundamental mode a differential pressure 
standing wave is established in the tube that has the greatest magnitude in the center of the tube 
and falls to zero at the ends. Higher order plane wave modes do propagate, and these will always 
be an integral number of half-wave lengths. Note that the effective length of the bore is always 
longer than the actual physical dimension of the tube. This is because the pressure wave 
penetrates a short distance beyond the end of the tube before partially reflecting back into the 
tube. I will state here without discussion that this correction is 0.3 Dbore (3, 13, 14). So that the 
effective length of the tube is Leff bore = Lbore + 0.6Dbore and the wave lengths of the resonant 
modes are given by nλ = 2Leff bore, where n is an integer (1,2,3,…). 
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Figure 5.  Tube with no holes. 

The addition of a side branch effectively changes the length of the tube, so in a flute when one of 
the tone holes is opened the sound pitch becomes higher because the effective length of the tube 
has been shortened. In what follows, I will discuss the effect of a single tone hole, or side branch, 
on the resonant frequency of the tube. Figure 6 will be used in the discussion that follows, which 
is based on that of Nederveen (14).  

 

Figure 6.  Model of tube with singe side branch. 

As discussed in section 3, an acoustic tube can be modeled as if it is an electrical transmission 
line. The characteristic impedance (Z0) is equal to p/U, the differential pressure (or acoustic 
pressure) divided by the mass flow associated with the particle movement as the wave passes. 
Now applying Kirchhoff’s current law at the junction, where the main tube meets the side 
branch, we see that the current into the junction must equal the current out of the junction. 
Because the pressure for all three branches must be equal, this leads to  

 
ଵ

௓ಽ
ൌ ଵ

௓ೞ್
൅ ଵ

௓ೃ
, (57) 

or the admittance looking back down the bore from the side branch must equal the sum of the 
two admittances at the junction. Now, if we return to equation 44, we can describe the input 
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impedance to any one of these sections by first setting ZL = 0, because all of our tube ends are 
open, and acoustic pressure there must go toward zero. We are left with the following: 

 ܼ௜௡ ൌ ݆ܼ଴ tan ݈݇. (58) 

We are going to use this expression many times with modifications for the length of the tube 
being described and the characteristic impedance in that tube.   

Now the concept of a replacement tube (14) needs to be introduced. The replacement tube is a 
fictitious tube that will represent the resonant tube after the correction for the side branch is 

introduced. The length of this fictitious tube is ܮ௘௙௙ ൌ
௅೐೑೑	್೚ೝ೐

ଶ
൅  ௕. Here, λb will represent theߣ

corrected length of the side branch te adjusted to represent the side branch as if it were in the 
main tube by correcting for the different areas:  

௕ߣ  ൌ ௘ݐ ቀ
஽್೚ೝ೐
஽ೞ್

ቁ
ଶ
. (59) 

Referring to the expression given at the beginning of section 3 for the characteristic impedance 
of any tube and equation 58, we can express the general admittance into a tube as follows: 

 ܻ ൌ ଵ

௓
ൌ െቀ ௌ

௝ఘబ௖
ቁ cotሺ݇ݖ ൅ ߰ሻ. (60) 

Here, S is the cross-sectional area of the tube, and ψ is a phase introduced to handle any phase 
adjustment needed. Now, in order to describe the admittance of the side branch, we first see that 
at z=0, ܻ → ∞, and this implies that ψ =0, so that at z=–te: 

 ௦ܻ௕ ൌ ቀ ௌೞ್
௝ఘబ௖

ቁ cot  ௘. (61)ݐ݇

The admittance looking down the tube toward the load end is found in a similar manner: 

 ோܻ ൌ ቀௌ್೚ೝ೐
௝ఘబ௖

ቁ cot ݇
௅೐೑೑	್೚ೝ೐

ଶ
 . (62) 

Now, to develop an expression for the admittance looking toward the source from the side 
branch, we first notice that at resonance, the impedance at the input goes to zero, so that ܻ → ∞. 
Allowing z=0 at the source, this leads to ψ = –mπ, where m is an integer. Now, again looking at 
the resonance condition for the replacement tube, we have kLeff = mπ. This leads to the following 

at z= െ
௅೐೑೑	್೚ೝ೐

ଶ
: 

 ௅ܻ ൌ െ ቀௌ್೚ೝ೐
௝ఘబ௖

ቁ cotሺ݇
௅೐೑೑	್೚ೝ೐

ଶ
െ  ௘௙௙ሻ. (63)ܮ݇

Now, we can develop a first approximation for λb, which will be used in describing the 
experimental results to follow. Again from equation 57 we have 

 YL = Ysb + YR. (64) 
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We now utilize the series expansion of the ܿݐ݋ሺݔሻ ൌ ଵ

௫
, because for our approximation we drop 

all the terms after the first. Inserting equations 61, 62, and 63 into 64, we are left with equation 
57 after simplification: 

  
ଵ

ಽ೐೑೑	್೚ೝ೐
మ

൅ ଵ
ಽ೐೑೑	್೚ೝ೐

మ
ି௅೐೑೑

൅ ଵ

௧೐
ೄ್೚ೝ೐
ೄೞ್

ൌ 0. (65) 

Now, we can let λb represent the length of the side branch as it would appear in the main tube 
having the same admittance of the actual side branch: 

௕ߣ  ൌ ௘ݐ
ௌ್೚ೝ೐
ௌೞ್

. (66) 

The length of the replacement tube used to describe the resonant tube of length Leff will then 
given by 

௘௙௙ܮ  ൌ
௅೐೑೑	್೚ೝ೐

ଶ
൅  ௕. (67)ߣ

5. Mason’s Approximate Network Acoustic Filter 

It seems that Stewart (15, 16) was the first to describe an acoustic filter by using electrical 
network theory in 1922. Mason (1) showed in 1927 that this theory was good only as a first 
approximation, and that some additions had to be made. Mason’s circuit is shown in figure 7.  

 

Figure 7.  Mason’s representation of an acoustic filter as an electronic network. 

Here, Zshunt represents the impedance of the side branch; it could contain several components. Z0 
is the characteristic impedance of the transmission line leading up to and away from the side 
branch. In Mason’s case, these were lumped components. This circuit is very similar to that 
which is still described today by modern researchers. For this reason, I am including it here for 
historical perspective. Later in the analysis section, I will use one of Mason’s structures, shown 
in figure 8, number 3, and his equations for equivalent length and area to calculate the resonant 
frequency of one of our photo-acoustic cells. Mason suggests that the shunt impedance in figure 
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7 should contain three elements in a T or π configuration. This is exactly what Keefe (17) 
suggests, and is in fact the circuit that I have chosen to use in my analysis. 

 

Figure 8.  Mason’s equivalent for side branch representation. 

6. Experimental Results and Analysis 

Two experiments were performed. The first was initiated, because we were trying to understand 
the resonant frequency of the photo-acoustic cell in our photo-acoustic spectrometer. The 
performance of the cell during regular operation always seemed to have a resonance above the 
calculated value. There were two reasons for this. First, it is very difficult to measure the speed 
of sound in the cell. In section 2, a method of calculation was offered that yields a value of  
335 m/s in the tube. This is the value I will use in the calculations done for our 1 × 10 mm cell. 
Second, we were not accounting for the length correction due to the side branch. 

The first experiment was done to simply replace our cell with a larger version made of PVC pipe. 
This tube shown in figure 9 is basically a scale model of our smaller photo-acoustic cell. The 
photo-acoustic spectrometer cell is 10 mm in length, 1 mm in diameter. It has a side branch that 
is 0.5 mm in diameter and 1 mm in length. The model cell is 303 mm long with diameter of 
27 mm. The side branch is 20 mm long with a diameter of 15 mm.  
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Figure 9.  Picture of experimental setup for tube with a single side branch. 

The method of analysis is as follows:  

 ቚ௣೔೙
௎೔೙
ቚ ൌ อ

cos ܮ݇ ݆ܼ଴ sin ܮ݇
௝

௓బ
sin ܮ݇ cos ܮ݇ อ ቤ

1 0
ଵ

௓ೄ
1ቤ อ

cos ܮ݇ ݆ܼ଴ sin ܮ݇
௝

௓బ
sin ܮ݇ cos ܮ݇ อ ቚ

௣೚ೠ೟
௎೚ೠ೟

ቚ. (68) 

These matrices represent the situation shown in figure 10. 

 

Figure 10.  Schematic of the tube shown in figure 9. 
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In equation 68, ZS is the shunt impedance that represents the side branch. As given in equation 58 

 ܼ௦ ൌ ݆ܼ଴ ቀ
஽್೚ೝ೐
஽ೞ್

ቁ
ଶ
tan  ௘. (69)ݐ݇

The term ቀ஽್೚ೝ೐
஽ೞ್

ቁ
ଶ
 appears because the characteristic impedance in the side branch is inversely 

proportional to the area of the side branch, and Z0 is inversely proportional to the area of the 
main tube. After calculating the total matrix for equation 68 and setting ܼ௜௡ ൌ

௣೔೙
௎೔೙

, we are left 

with  

 ܼ௜௡ ൌ
௝௓బቆୱ୧୬ଶ௞௅൬

ವ್೚ೝ೐
ವೞ್

൰
మ
୲ୟ୬௞௧೐ାሺୱ୧୬ଶ௞௅ሻమቇ

൬
ವ್೚ೝ೐
ವೞ್

൰
మ
୲ୟ୬௞௧೐ାୱ୧୬௞௅ ୡ୭ୱ௞௅

 . (70) 

Now, resonance occurs when the imaginary part of Zin is equal to zero, so that 

 sin ܮ2݇ ൤ቀ஽್೚ೝ೐
஽ೞ್

ቁ
ଶ
tan ௘൨ݐ݇ ൅ ሺsin ሻଶܮ݇ ൌ 0. (71) 

This is the resonance condition. Note the term in the square brackets. This is the input impedance 
to the side branch. Later, when we analyze side branch structures that are different than the one 
in figure 10, we can simply calculate the new input impedance to the new structure and substitute 
it in the square bracket in equation 71. 

Now when we insert the dimensions of the PVC model tube into equation 71 and do a numerical 
analysis, we find that the calculated resonance frequency is 653 Hz. In the test done on the tube 
in figure 10, the measured resonance was 677 Hz. This is an error of 3.7%. The same analysis 
was used with substitutions for the dimensions of the 1 × 10 mm cell. The calculated resonance 
was at 18,362 Hz. The measured value of the resonance tested with vinyl acetate as the gas in the 
cell was 18,500 Hz. This is an error of less than 1%. 

A second experiment was performed on the PVC tube in figure 11. We started this test with a 
tube that had no hole in the side. We tested the resonance frequency of the tube and then drilled 
holes of various sizes in the side. After each new hole was drilled, the resonance frequency was 
checked and recorded. The result is shown in table 1.  
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Figure 11.  Picture of the tube used for varying the diameter of the side branch. 

Table 1. Result of measuring the resonant frequency of tubes with side branches of various diameters. 

Diameter (m) (a/b)2 te (m) Leff (m) 
c/2Leff 

(Hz) 
Measured Freq. 

(Hz) 
% Error 

0 — — — — 517 — 
0.00165 248 0.004 1.146 146 527 — 
0.00305 72.7 0.00442 0.475 352 553 — 
0.00561 21.5 0.00518 0.26531 630 595 5.6 
0.0123 4.47 0.00718 0.1861 899 745 17.1 

0.01587 2.68 0.00826 0.17614 950 783 17.6 
0.02222 1.27 0.01016 0.1669 1003 842 16 

 
The most important thing to notice is that the diameter of the side branch hole has a significant 
effect on the resonant frequency of the tube. Also note that when (a/b)2 >20, the error is very 
large. The reason for this is that the effective length of the tube becomes larger than the actual 
tube, which is 0.308 m. In terms of resonance in the tube, this is not possible.  

Now, I turn my attention to the cell shown below in figure 12. This is an actual cell used in a 
photo- acoustic spectrometer. Note that this structure is different than that shown in figure 10. 
The microphone chamber is, in effect, a tube with varying diameter. The situation is shown in  
figure 13 below. The equivalent matrix for this structure is given in equation 72. 
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Figure 12.  Diagram of actual acousto-optic spectrometer. 

 ቚ
௜௡݌
௜ܷ௡
ቚ ൌ อ

cos ଵܮ݇ ݆ܼଵ sin ଵܮ݇
௝

௓భ
sin ଵܮ݇ cos ଵܮ݇

อ อ
cos ଶܮ݇ ݆ܼଶ sin ଶܮ݇
௝

௓మ
sin ଶܮ݇ cos ଶܮ݇

อ ቚ
௢௨௧݌
ܷ௢௨௧

ቚ. (72) 

Here, it should be noted that ܼଵ ൌ
ఘబ௖

ௌభ
ൌ ܼ଴ ቀ

஽್೚ೝ೐
஽భ

ቁ
ଶ
 and ܼଶ ൌ

ఘబ௖

ௌమ
ൌ ܼ଴ ቀ

஽್೚ೝ೐
஽మ

ቁ
ଶ
. 

 

 

Figure 13.  Structure of side branch with two sections. 

Using the dimensions given in figure 13 under “Microphone Channels” in equation 72 and 
solving for the input impedance of the side branch, we find that the imaginary part of Zin is 

ሾܼ௜௡ሿ݉ܫ  ൌ ൥
ቀ
ವ್೚ೝ೐
ವమ

ቁ
మ
ୱ୧୬௞௅మ ୡ୭ୱ௞௅భାቀ

ವ್೚ೝ೐
ವభ

ቁ
మ
ୱ୧୬௞௅భ ୡ୭ୱ௞௅మ

ୡ୭ୱ௞௅భ ୱ୧୬௞௅మିቀ
ವమ
ವభ
ቁ
మ
ୱ୧୬௞௅భ ୡ୭ୱ௞௅మ

൩. (73) 
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By inserting this term into the bracketed portion of equation 71 and solving, we are led to a 
resonance frequency of 20,235 Hz. The measured resonance frequency was 19,800 Hz, so that 
the error is 2.1%.  

I mentioned earlier that there would be a discussion of the sources of error in our calculations. 
One source of error found in the experiment with varying side branch diameters is the 
imperfection of the drilled holes. The sharpness of the edges does have an effect on the 
impedance of the hole. In our case, one can see from figure 12 that the hole is very ragged. 
Another source of error comes from our assumption that the ends of the tubes are an infinite 
open with no flange structure. This is not the case in any of the situations discussed. The final 
source of error to be discussed here is the speed of sound in the tube. In all cases, we assumed 
perfectly rigid and perfectly smooth sides on the tube. Obviously this can’t be the case. We could 
and have assumed that the formula given at the end of section 2.1 is valid, but in the case of our 
PVC tube this does not seem to hold true. In that case, the speed was measured to be 334 m/s, 
but this measurement was dependant on the assumption that the end correction was 0.3D. The 
calculated value from equation 16 is 338.76 m/s.  

7. Conclusions 

We have shown that it is quite reasonable to assume that in our photo-acoustic cells the acoustic 
waves travel as plane waves. This assumption is also supported by Tijdeman (5), where he shows 
that the velocity profile of waves that a have S (shunt wave number) greater than 10 are fairly flat 
across area of the tube. In our case of a 1-mm-diameter representative cell, S=44, which 
corresponds to a velocity profile that is very flat across the area of the tube. We developed a 
matrix method of calculating the input impedance of the acoustic resonators, and using this can 
predict the resonant frequencies within a few percent. This method can be extended to more 
complex structures for side branches with similar results. We also showed that the diameter of 
the side branch hole is critical in the design of a photo-acoustic resonant cell. For side branch 
diameters that are less than one-quarter the diameter of the main bore the resonant frequency 
cannot be predicted.  
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List of Symbols, Abbreviations, and Acronyms 

x  equilibrium coordinate of a thin sheet of molecules 

ξ displacement of the sheet along the axis of propagation 

u  velocity of the sheet u = 
డక

డ௧
  

ρ instantaneous density at any point 

ρ0 constant equilibrium density of the medium 

s condensation at any point defined as s = 
ఘି	ఘబ
ఘబ

 or ρ = ρ0(1+s) 

P instantaneous pressure at any point 

P0 constant equilibrium pressure 

p excess pressure or acoustic pressure at any point defined as p = P-P0 

c velocity of wave propagation 

vp phase velocity 

Γ propagation constant in Zwikker−Kosten derivation of phase velocity 

ΓL reflection coefficient at the load of a transmission line  

 ஺  thermal boundary-layer thicknessߜ

ν  kinetic viscosity  

η dynamic viscosity 

γ ratio of the specific heats 

CV specific heat at constant volume 

CP specific heat at constant pressure 

k  propagation constant everywhere except velocity calculation 

r  radius of the tube 

D  diameter of the tube 

z  propagation direction 

ω radian frequency  
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L  length in tube 

Z  impedance 

Y  admittance 

V voltage 

I  current 

te  effective length of a side branch 

λb  effective length of a side branch corrected for the diameter of the main tube 
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